Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2024: 1406858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505371

RESUMO

Chocolate products on the market are generally in the form of chocolate bars as snacks made from cocoa powder. Fat and powder are separated first through a pressing process to obtain the cocoa powder. Cocoa powder loses most of its fat content during processing. Therefore, the study aimed to determine the effect of steaming time on the cocoa bean content of fatty acids, free fatty acids, proximate levels, and antioxidant activity of snack bar products made from steamed cocoa beans. Seven steaming time intervals for cocoa beans were studied. The results showed that a longer steaming time affects the fatty acids, saturated fatty acids, antioxidants, and proximate in cocoa beans. Steaming time treatment at 45 minutes increased oleic acid, palmitic acid, and antioxidant activity. In addition, reducing free fatty acids represents a quality improvement that meets international Codex Alimentarius standards, offering a competitive advantage in the market. The food industry can adopt this steaming technique to develop snack bars and new products that are healthier and more sustainable by using steaming as an effective processing method in maintaining and increasing the nutritional value of products.


Assuntos
Cacau , Chocolate , Antioxidantes , Ácidos Graxos , Lanches
2.
Vet World ; 16(7): 1477-1488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621549

RESUMO

Background and Aim: Herbal plants have the potential to reduce the population of metagonic bacteria and protozoa due to the bioactive compound contained in herbal plants. This study aimed to evaluate the effect of herbal plant supplementation on rumen fermentation characteristics, methane (CH4) gas emissions, in vitro nutrient digestibility, and protozoan populations. Materials and Methods: This study consisted of two stages. Stage I involved determining the potential of herbal plants to increase total gas production (Orskov and McDonald methods) and reduce the protozoan population (Hristov method). Three potential herbs were selected at this stage and used in Stage II as supplements in the palm kernel cake (PKC)-based diet (30% herbal plants + 70% PKC). Proximate and Van Soest analyses were used to determine the chemical composition. In vitro dry matter digestibility (IVDMD), organic matter (IVOMD), and rumen fermentation characteristics were determined using Theodorous method. Conway microdiffusion was used to determine ammonia concentration (NH3). Gas chromatography was used to determine the total and partial volatile fatty acid production. Results: The results of the first stage showed that seven herbal plants (Moringa oleifera, Rhodomyrtus tomentosa, Clerodendron serratum, Curcuma longa Linn., Urena lobata, Uncaria, and Parkia timoriana) significantly differed in terms of total gas production (p < 0.05). Herbal plants can increase gas production and reduce protozoan populations. The highest total gas production was observed using P. timoriana, M. oleifera, and C. longa Linn. Moringa oleifera plants were the most effective in lowering protozoa population. In Stage 2, the supplementation of herbal plants in PKC-based-diet significantly increased IVDMD, that was ranged from 56.72% to 65.77%, IVOMD that was ranged from 52.10% to 59.54%, and NH3, that was ranged from 13.20 mM to 17.91 mM. Volatile fatty acid partial and total gas production potential and CH4 gas emissions were also significantly different from those of the control (p < 0.05). Conclusion: Supplementation of M. oleifera, C. longa Linn., and P. timoriana in ruminant diet effectively increased total gas production, IVDMD percentage, and IVOMD, and reduced CH4 gas emissions and protozoa populations during rumen fermentation.

3.
ACS Omega ; 7(37): 33087-33096, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157738

RESUMO

Energy storage and modern electronics industries are in essential need of high dielectric and highly flexible materials. In this study, polyacrylonitrile and reduced graphene oxide (PAN/GO) were prepared by electrospinning. The composite morphology produced a homogeneous, smooth, and flexible surface with high tensile strength and durability. The diameter of the fibers in the composite mats ranged from 232 to 592 nm. The X-ray diffraction pattern recording displayed a sharp peak characteristic centered between 20 and 30° angles with a maximum degree of crystallinity of 86.23%. The evaluation of the Fourier-transform infrared spectrum indicated the interaction between GO and PAN through hydrogen bonds. The differential scanning calorimetry measurements confirmed that GO acted as a nucleating agent that improves the thermal stability of the composite. The dielectric properties exhibited the relative permittivity of the composite of 86.4 with a dielectric loss (tan δ) of 4.97 at 102 Hz, and the maximum conductivity was achieved at 34.9 × 10-6 Sm-1 at high frequencies.

4.
RSC Adv ; 11(19): 11233-11243, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35423620

RESUMO

Graphene oxide derived from palm kernel shells (rGOPKS) and polyacrylonitrile (PAN) were electrospun into composite fiber mats and evaluated as supercapacitor electrode materials. Their morphologies and crystalline properties were examined, and chemical interactions between rGOPKS and PAN were investigated. The diameters of individual fibers in the rGOPKS/PAN composite mats ranged from 1.351 to 1506 µm and increased with increasing rGOPKS content. A broad peak centered near 23° in the X-ray diffraction (XRD) pattern of rGOPKS corresponded to the (002) planes in graphitic carbon. Characteristic rGOPKS and PAN peaks were observed in the XRD patterns of all the composite fibers, and their Fourier-transform infrared (FTIR) spectra indicated hydrogen bond formation between rGOPKS and PAN. The composite fiber mats had smooth and homogeneous surfaces, and they exhibited excellent flexibility and durability. Their electrochemical performance as electrodes was assessed, and a maximum specific capacitance of 203 F g-1 was achieved. The cycling stability of this electrode was excellent, and it retained over 90% of its capacitance after 5000 cycles. The electrode had an energy density of 17 W h kg-1 at a power density of 3000 W kg-1. Dielectric results showed a nanofiber composite dielectric constant of 72.3 with minor leakage current (tan δ) i.e., 0.33 at 51 Hz. These results indicate that the rGOPKS/PAN composite fibers have great promise as supercapacitor electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...